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Abstract

By introducing two displacement functions and two stress functions, the governing equations of the linear theory of

magneto-electro-thermo-elasticity with transverse isotropy are simplified. On selecting certain physical quantities as the

basic unknowns, two new state equations are established. Each of them is order reduced when compared with the one

reported recently in literature, leading to a higher numerical efficiency. The material inhomogeneity along the axis of

symmetry (z-direction) can be taken into account and an approximate laminate model is employed to facilitate deriving

analytical solutions. The validity of new formulations is examined by considering a laminated magneto-electro-elastic

rectangular plate and good agreement is obtained with existent results. A plate with a functionally graded property

is then analyzed. The effect of magnetoelectric coupling in a BaTiO3–CoFe2O4 composite predicted from the micro-

mechanics simulation is studied quantitatively.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Problems of magneto-electro-elastic materials are of intensive research interest in recent years (Avel-

laneda and Harshe, 1994; Huang et al., 1998; Ezzat and Othman, 2000; Li, 2000; Tan and Tong, 2002;

Wang and Shen, 2003), because of the coupling effects among the electric, magnetic and elastic fields,

which may enable them to be a potential material for adaptive structural control. Pan (2001) first pre-

sented an exact three-dimensional analysis of a simply supported multilayered orthotropic magneto-

electro-elastic plate using a propagator matrix method. Wang et al. (2003) recently proposed an exact

state space approach. The two methods in Pan (2001) and Wang et al. (2003) should be essentially the
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same, but the later one is easier to be understood and also more convenient for use. From the state space

formulations established by Wang et al. (2003) for orthotropic magneto-electro-elastic materials, the

ones for a material with transverse isotropy can be readily written down. It is noted here that, how-

ever, more efficient state space formulations can be established through some simple mathematical
substitutions, as already illustrated in piezoelasticity (Ding et al., 2000; Chen et al., 2001; Ding and Chen,

2001).

By introducing two displacement functions and two stress functions, two independent state equations

are established from the three-dimensional magneto-electro-elasticity equations for transverse isotropy with

thermal effect, body forces, free charge density and electric current density. In contrast to the tenth-order

state equation reported recently by Wang et al. (2003), the ones presented here are with lower orders

(second-order and eighth-order, respectively) and hence the computational efficiency can be improved for

practical problems. More importantly, the use of the displacement and stress functions allows one to get a
deep insight into the physical essence of related problems. It is noted here that the state space formula-

tions are also valid when the material is inhomogeneous along the axis of symmetry (perpendicular to the

plane of isotropy). The new state space formulations are then applied to analyze the static behaviors of

a nonhomogeneous magneto-electro-elastic plate by employing an approximate laminate model. We find

that closed-form solutions can be obtained not only for the simply supported conditions, as that considered

by Wang et al. (2003), but also for another kind of boundary conditions, namely the rigidly slipping

conditions. Numerical results of a simply supported rectangular plate with a functionally graded property

are presented. As is known to all, there is no magnetoelectric coupling existing in either BaTiO3 or
CoFe2O4. Both Pan (2001) and Wang et al. (2003) took the magnetoelectric coefficients as zero in the

analysis of a BaTiO3–CoFe2O4 laminated plate. However, as pointed our by Li (2000), the micromechanics

simulation showed that the magnetoelectric coupling does exist in a BaTiO3–CoFe2O4 fiber reinforced or

laminated plate. The effect of this coupling on the plate bending behavior will be examined in the paper

numerically.
2. Basic equations

In Cartesian coordinates (with the z-axis being normal to the plane of isotropy), the constitutive relations

of a transversely isotropic magneto-electro-elastic body with the thermal effect read (Li, 2000; Wang and

Shen, 2003)
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where, /, w, Di, Bi and T are the electric potential, magnetic potential, electric displacement components,
magnetic induction components, and the incremental temperature, respectively; ri and sij are the nor-

mal and shear stresses, respectively; u, v and w are components of the mechanical displacement in x-, y- and
z-directions, respectively; cij, eij, eij, qij, dij, lij, p3 and m3 are the elastic, dielectric, piezoelectric, piezo-

magnetic, magnetoelectric, magnetic, pyroelectric and pyromagnetic constants, respectively; bi are the

thermal modules. Note that we have an additional relation c11 ¼ c12 þ 2c66 for transverse isotropy. In

this paper, all these material constants are assumed to be functions of the coordinate z. The governing

equations are
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where Fi are components of the body force, fe is the free charge density, and fm the electric current density

(or magnetic charge density). The temperature distribution usually can be determined a priori from the

corresponding temperature field equation, thus it is assumed known throughout this paper.

Following a routine method (Fan and Ye, 1990; Lee and Jiang, 1996; Chen et al., 1998; Tarn, 2002;

Wang et al., 2003), the conventional state equation involving effects of body force, free charge density,

electric current density and temperature change as well as the material inhomogeneity along z-direction is
obtained from Eqs. (1)–(6) as follows
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where the matrices A1 and A2 can be deduced from Eqs. (11) and (12) in Wang et al. (2003) by simply

setting c11 ¼ c22, c13 ¼ c23, c44 ¼ c55, e31 ¼ e32, e24 ¼ e15, e11 ¼ e22, q31 ¼ q32, q24 ¼ q15, d11 ¼ d22, and

l11 ¼ l22. In our notation, they are
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where K ¼ o2=ox2 þ o2=oy2, ‘‘sym.’’ indicates a symmetric matrix, and the following definitions have been

employed in Eqs. (7) and (8)
k1 ¼ e11 þ e215=c44; k2 ¼ d11 þ e15q15=c44; k3 ¼ l11 þ q215=c44; k4 ¼ c13g1 þ e31g2 þ q31g3 � c11;

k5 ¼ c13l1 þ e31l2 þ q31l3 � b1;

gi ¼ ðc13a1i þ e31a2i þ q31a3iÞ=a; li ¼ ðb3a1i � p3a2i � m3a3iÞ=a; ð9Þ

a ¼
c33 e33 q33
e33 �e33 �d33
q33 �d33 �l33

������
������
and aij are the corresponding algebraic cofactors of a with aij ¼ aji.
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3. New formulations for state space approach

To construct new state space formulations, the following substitutions are employed (Ding et al., 2000)
u ¼ � oW
oy

� oG
ox

; v ¼ oW
ox

� oG
oy

;

sxz ¼ � os1
oy

� os2
ox

; syz ¼
os1
ox

� os2
oy

;

Fx ¼ � oF1
oy

� oF2
ox

; Fy ¼
oF1
ox

� oF2
oy

;

ð10Þ
where W and G are two displacement functions, s1 and s2 are two stress functions, and F1 and F2 are two

body force functions. Note that Wang and Shen (2002) employed the decomposition formula for dis-

placements in Eq. (10) only to derive a general solution for a transversely isotropic magneto-electro-elastic
medium. Substitution of Eq. (10) into the expressions for sxz and syz in Eq. (1), gives
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which will be satisfied provided that
s1 � c44
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oz

¼ 0; ð12Þ
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¼ 0: ð13Þ
Substitution of Eqs. (1) and (10) into the first two equations in Eq. (4), yields
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Similar to the demonstration outlined in Appendix A in Ding et al. (1996), one can obtain from Eq. (14)
A ¼ 0; ð17Þ

B ¼ 0: ð18Þ

Utilizing Eq. (10), one obtains from the third equations of Eqs. (1)–(4), as well as Eqs. (5) and (6)
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Eqs. (12), (13) and (17)–(24) can be rearranged, after a straightforward mathematical manipulation, and

written in matrix form as follows:
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where the notations defined in Eq. (9) have been employed. We still have the following equations to de-

termine the other variables
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As shown in Eqs. (25)–(27), the 10 basic variables (or state variables) W, s1, G, rz, Dz, Bz, s2, w, / and w
are dropped into three groups: one is only related to W and s1 and the other two ones coupled by the

remnant eight state variables. It is obvious that either Eq. (25) or the one coupled by Eqs. (26) and (27) has

an order lower than Eq. (7), leading to a somehow higher numerical efficiency. Furthermore, the separation
of state equations will clearly show some particular characteristics occupied by practical problems that

cannot be revealed by the tenth-order state equation. For example, the first group characterized byW and s1
is independent of the electric and magnetic potentials and relates to the elastic in-plane deformation only.

Also, for the bending of a plate, it is only necessary to solve Eqs. (26) and (27), the total order of which is

eight, instead of the tenth one, Eq. (7).

Another superiority of the new formulations is that relative simpler operators are involved. As can be

seen, the right-hand sides of Eqs. (25)–(27) include the operator K only, which enables us to write down

directly the corresponding formulations in circular cylindrical coordinates ðr; h; zÞ. In fact, Eqs. (25)–(27)
are still valid except for
K ¼ o2=or2 þ ro=or þ o2=ðr2 oh2Þ;
while the separation formulae in Eq. (10) should be replaced by
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Correspondingly, Eq. (28) becomes
rr þ rh ¼ 2ðk4 þ c66ÞKGþ 2g1rz þ 2g2Dz þ 2g3Bz þ 2k5T ;
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In the next section, the bending of a nonhomogeneous transversely isotropic rectangular magneto-
electro-elastic plate that has arbitrarily distributed material properties along the thickness direction will be

considered.
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4. Analysis of nonhomogeneous rectangular plates

Consider a transversely isotropic rectangular plate of width a, length b and thicknessH , Fig. 1a. The plate

is inhomogeneous along z-direction, with the isotropic plane parallel to the middle plane. We first assume
that the plate is simply supported at all four straight edges, and in the end of this section, several other

possible boundary conditions, for which three-dimensional solutions can be derived, will also be discussed.

If we neglect the thermal effect, the body forces, the free charge density, as well as the electric current

density, the inhomogeneous terms in Eqs. (25)–(27) vanish. It is assumed that
W
s1

� �
¼

X1
m¼0

X1
n¼0

H 2WðfÞ
Hc044s1ðfÞ

� �
cosðmpnÞ cosðnpgÞ; ð31Þ
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0
33
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DzðfÞffiffiffiffiffiffiffiffiffiffiffiffi
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0
33

p
BzðfÞ

Hc044s2ðfÞ
HwðfÞ

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0
33

p
/ðfÞ

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0
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p
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8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:
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sinðmpnÞ sinðnpgÞ; ð32Þ
where f ¼ z=H , n ¼ x=a and g ¼ y=b are the dimensionless coordinates, Jmn ¼ �ðs21 þ s22Þ, s1 ¼ ðH=aÞmp,
s2 ¼ ðH=bÞnp, and c044, e

0
33 and e033, etc. represent the material constants at z ¼ 0. According to Eqs. (31) and

(32), the following boundary conditions are satisfied at the edges
x ¼ 0; a : w ¼ rx ¼ v ¼ / ¼ w ¼ 0 and y ¼ 0; b : w ¼ ry ¼ u ¼ / ¼ w ¼ 0: ð33Þ
This type of boundary conditions is a generalization of the simply supported ones for elastic plates in a

three-dimensional form (Pagano, 1970). It further requires that both the electric and magnetic potentials

should be zero at the edges for the current problem. It should be noted that the simply supported conditions
defined by Eq. (16) in Wang et al. (2003) are not correct in a strict sense. For example, Dz, Bz, rz and szy
should not appear in the boundary expressions at x ¼ 0.
Fig. 1. A nonhomogeneous rectangular plate and the laminate model.
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Substituting Eqs. (31) and (32) into Eqs. (25)–(27), making use of the orthogonal property of the trig-

onometric functions, one obtains for an arbitrary couple of ðm; nÞ

d

df
V1ðfÞ ¼ M1V1ðfÞ;

d

df
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ffiffiffiffiffiffiffiffiffiffiffi
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0
33

p
a

0 0 0 0

a22e033
a

a23
ffiffiffiffiffiffiffiffiffiffiffiffi
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0 0 0 0
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: ð35Þ
At this stage, two dimensionless state equations in the first-order ordinary differential form have been

obtained in Eq. (34), with however, nonconstant coefficient matrices M1 and M2. It is usually difficult to

find out the exact solutions of such state equations except for some particular cases of material variations

along z-direction. For a general case that the material constants are arbitrary functions of z (may be dif-

ferent for different material constants), an efficient analysis based on the approximate laminate model, as

shown in Fig. 1b, can be adopted (Tanigawa, 1995; Ding and Chen, 2001). In this method, the plate is

divided into several equal thin layers, say p layers (Fig. 1b), each with a very small thickness. Thus in every
layer, the material constants can be assumed constant. It is known that with the number of layers increases,

the laminate model gradually approaches the actual plate and the solution will be more and more close to

the exact one. In doing so, the coefficient matrices M1 and M2 become constant in the jth layer and will be

denoted as Mj
1 and Mj

2, which have the values of M1 and M2 respectively, at z ¼ ðj� 1=2ÞH=p, i.e. at the
middle plane of the jth layer.

The solutions to the two state equations in Eq. (34) corresponding to the laminate model can be obtained

using the matrix theory
V1ðfÞ ¼ exp½Mj
1ðf� fjÞ�V1ðfjÞ; ðfj 6 f6 fjþ1; j ¼ 1; 2; . . . ; pÞ; ð36Þ

V2ðfÞ ¼ exp½Mj
2ðf� fjÞ�V2ðfjÞ; ðfj 6 f6 fjþ1; j ¼ 1; 2; . . . ; pÞ; ð37Þ
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where fj ¼ ðj� 1Þ=p. The exponential matrix exp½Mj
kðf� fjÞ� is known as the transfer matrix that can be

expressed in terms of a polynomial about the matrix M
j
k by virtue of the Cayley–Hamilton theorem

(Bellman, 1970).

Since the basic variables should be continuous at f ¼ fj ðj ¼ 2; 3; . . . ; pÞ, we obtain from Eqs. (36) and
(37)
V1ð1Þ ¼ T1V1ð0Þ; V2ð1Þ ¼ T2V2ð0Þ; ð38Þ
where T1 ¼
Q1

j¼p expðMj
1=pÞ and T2 ¼

Q1

j¼p expðMj
2=pÞ are matrices of the second-order and eighth-order,

respectively.

If the plate is subjected to a combination of normal mechanical forces, electric displacements, and

magnetic inductions at the top and bottom surfaces, these loads should be expanded into double Fourier
series, and hence Eq. (38) can be solved in a routine way (Ding and Chen, 2001; Wang et al., 2003).

Note that after the state variables at the top surface have been obtained from Eq. (38), their values at any

interior point can be calculated by
VkðfÞ ¼ exp½Mj
kðf� fjÞ�

Y1
i¼j�1

exp½Mi
k=p�Vkð0Þ; ðk ¼ 1; 2; fj 6 f6 fjþ1Þ ð39Þ
The induced variables are then determined from Eq. (28).

In the above, we propose an approximate three-dimensional analysis for a magneto-electro-elastic plate

with material inhomogeneity along the thickness direction. For a homogeneous or laminated plate, the

solution becomes completely exact as that shown in Wang et al. (2003).
Let us take a deep look at the possible boundary conditions that the above analysis can be applied

similarly. If we replace the factor cosðmpnÞ cosðnpgÞ with sinðmpnÞ sinðnpgÞ in Eq. (31) and the factor

sinðmpnÞ sinðnpgÞ with cosðmpnÞ cosðnpgÞ in Eq. (32), the boundary conditions at the four edges become
x ¼ 0; a : sxz ¼ sxy ¼ u ¼ Dx ¼ Bx ¼ 0 and y ¼ 0; b : syz ¼ sxy ¼ v ¼ Dy ¼ By ¼ 0 ð40Þ

which correspond to the so-called rigidly slipping conditions for elastic plates. The succeeding analysis is

the same as that for the simply supported conditions. Of course, the loads should also be expanded in a

proper form.

It is noted here that for a plate having simple support at some edges and having rigidly slipping support
at the other edges, three-dimensional solutions are also derivable. For example, when the edge x ¼ a is

simply supported, and the other three edges have rigidly slipping conditions, we can assume
W
s1

� �
¼

X1
m¼0

X1
n¼1

H 2WðfÞ
Hc044s1ðfÞ

� �
sin

2mþ 1

2
pn

� �
sinðnpgÞ; ð41Þ

G
rz

Dz

Bz

s2
w
/
w

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼
X1
m¼0

X1
n¼0

H 2GðfÞ=Jmn
c044rzðfÞffiffiffiffiffiffiffiffiffiffiffi
c044e

0
33

p
DzðfÞffiffiffiffiffiffiffiffiffiffiffiffi

c044l
0
33

p
BzðfÞ

Hc044s2ðfÞ
HwðfÞ

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c044=e

0
33

p
/ðfÞ

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c044=l

0
33

p
wðfÞ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

cos
2mþ 1

2
pn

� �
cosðnpgÞ: ð42Þ
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5. Numerical results

The examples considered by Wang et al. (2003) are first checked and good agreement is obtained. The

correctness of the new formulations is thus clarified. The various conclusions drawn there are not repeated
here for brevity.

We then consider a simply supported nonhomogeneous magneto-electro-elastic rectangular plate with

the length-to-thickness ratio a=H ¼ 10 and the width-to-thickness ratio b=H ¼ 5. Three types of sinusoidal

loading ðm ¼ n ¼ 1Þ applied on the top surface of the plate ðz ¼ 0Þ only are considered:
Table

Dimen

Loa

1

2

3

Load 1 : rzð0Þ ¼ 1; Load 2 : Dzð0Þ ¼ 1; and Load 3 : Bzð0Þ ¼ 1:
In addition, the following functionally graded model (Reddy et al., 1999) concerning the material in-

homogeneity is employed:
M ¼ MB H � z
H

� �j

þMC 1

�
� H � z

H

� �j�
; ð43Þ
where j is the inhomogeneity parameter or gradient index, M represents an arbitrary material constant,

and MB and MC are the material constants of BaTiO3 and CoFe2O4, respectively. At the first stage, we
take the material constants as exactly the same as those in Tables 1 and 2 of Wang et al. (2003), where the

magnetoelectric coupling was not considered, i.e. d11 ¼ d33 ¼ 0. As regards the inhomogeneity of material,

this example just considers a typical one from the theoretical view of point, although it seems that no report

on functionally graded magneto-electro-electric materials can be found yet. It is believed here, however,

such materials will be produced immediately, just as its counterpart of piezoelectric materials (Wu et al.,

1996).

First of all, we should verify the convergence characteristics of the present method. Table 1 compares the

calculated dimensionless physical quantities at the middle plane of the plate ðf ¼ 0:5Þ for a 30-layer model
and a 32-layer model, respectively. The inhomogeneity parameter is taken to be j ¼ 3. It is seen that the

difference between results of the two models is completely negligible. Thus in the following, we shall take

p ¼ 30 and the results are believed to be highly accurate.

The variations of the nondimensional physical quantities along the thickness direction are calculated for

four values of j. The results shown in Figs. 2–4 are for Loads 1, 2 and 3, respectively. It can be seen that the

material inhomogeneity has an obvious effect on the distribution of the magneto-electro-elastic field, except

for rz when the plate is subjected to Load 1. For a laminated plate, Wang et al. (2003) also reported that

there is almost no difference of rz for two different stacking schemes considered by them, as shown in
Fig. 1d of their paper. It is noted that when j ¼ 0, the plate is a homogeneous BaTiO3 plate and when j
tends to infinity, it becomes a homogeneous CoFe2O4 plate. Because the homogeneous BaTiO3 plate has

qij ¼ dij ¼ 0, the magnetic field vanishes, as shown in Figs. 2e,f and 3e,f, when it is subjected to Load 1 and
1

sionless physical quantities ðf ¼ 0:5Þ of the plate for two laminate models

d p rz Dz Bz w / w

30 0.512219 0.003101 )0.030165 )14.8034 )0.92834 0.031699

32 0.512227 0.003104 )0.030178 )14.8038 )0.92824 0.031700

30 0.005092 0.063811 )0.097001 )0.485768 7.56564 0.007404

32 0.005092 0.063820 )0.096966 )0.485676 7.56496 0.007402

30 1.3645· 10�4 )8.1619· 10�5 0.762164 0.017022 0.006617 )0.045610
32 1.3611· 10�4 )8.1620· 10�5 0.762115 0.017039 0.006617 )0.045607



Fig. 2. Dimensionless quantities along the thickness direction for Load 1: (a) w; (b) rz; (c) /; (d) Dz; (e) w; (f) Bz.
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Load 2, respectively. When the homogeneous BaTiO3 plate is subjected to Load 3, however, the elastic and

electric fields vanish as shown in Fig. 4a–d.

From the micromechanics study of Li (2000), it is known that for a two-phase BaTiO3–CoFe2O4

composite, the magnetoelectric coefficients are not zero ðd11 6¼ 0; d33 6¼ 0Þ as a result of material synthesis,



Fig. 3. Dimensionless quantities along the thickness direction for Load 2: (a) w; (b) rz; (c) /; (d) Dz; (e) w; (f) Bz.
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although neither phase shows this coupling. The magnitude of the magnetoelectric coupling depends on the

factors such as the material combination method and phase volume fraction. For a functionally graded

material represented by Eq. (43), there is no simulation result of the magnetoelectric coupling available in



Fig. 4. Dimensionless quantities along the thickness direction for Load 3: (a) w; (b) rz; (c) /; (d) Dz; (e) w; (f) Bz.
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literature. Li (2000) also pointed out that the theoretical prediction of the magnetoelectric coupling might

be different from the experimental results. Nevertheless, our aim here is just to study the effect of this
coupling on the behavior of the plate. Note that the material constants of the functionally graded plate

represented by Eq. (43) vary from the ones of BaTiO3 at the top surface to that of CoFe2O4 at the bottom



Table 2

Effect of magnetoelectric coupling on field variables ðf ¼ 0:8Þ
Load Coupling rz Dz Bz w / w

1 No 0.10866 )0.00044 )0.07329 )14.6226 )0.77997 0.03026

Yes 0.10866 )0.00044 )0.07327 )14.6223 )0.77991 0.03027

2 No 0.00171 0.00592 )0.05155 )0.48740 7.43710 0.00912

Yes 0.00171 0.00592 )0.05185 )0.48730 7.43690 0.00917

3 No 5.2019· 10�5 1.6617· 10�6 0.33459 0.01838 0.00750 )0.05681
Yes 5.4436· 10�5 2.9223· 10�6 0.33459 0.01763 0.00892 )0.05681
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surface continuously. Thus the two coefficients d11 and d33 are assumed to vary with the thickness direction

in a way similar to that presented in Fig. 5(a) of Li (2000), which is approximately fitted as
1 D
d11ðfÞ ¼ 3:5f31 � 35f21 þ 31:5f1

d33ðfÞ ¼
�2250f21 þ 5025f1; for 06 f6 0:9

�300000f21 þ 543000f1 � 243000; for 0:96 f6 1:0

(
ð44Þ
with the unit 10�12 N s/(VC), where f1 ¼ 1� f. In addition, j ¼ 3 is selected for performing numeri-

cal calculation. Table 2 compares the nondimensional physical quantities at f ¼ 0:8 between the two

cases, i.e. with and without the magnetoelectric coupling, respectively. As we can see, for the first two

types of loads, the magnetoelectric coupling almost has no influence on the magneto-electro-elastic field in
the plate. However, the situation changes for Load 3. In particular, there is an obvious effect on the

electric field. For example, there is a relative error 1 about 15.9% of electric potential between the two cases,

and it is up amount to 43.1% considering the electric displacement. To get a further knowledge, the dis-

tributions of Dz and / along the thickness direction are displayed in Figs. 5 and 6, respectively. We

note that at about f ¼ 0:2, the electric displacement has its biggest negative value, for which the relative

error between the two cases still has a value of 6.6%. While at f ¼ 1, the electric potential arrives its biggest

value, for which the relative error is about 18.8%. It is obvious that when the plate is subjected to a

magnetic load, the magnetoelectric coupling due to the mixture of the two phases should be taken
into consideration.
6. Conclusions

By introducing two displacement functions and two stress functions, state equations with lower orders

are derived in the paper. The thermal effect, body force, free charge density and electric current density are

involved in the derivations. The separation of state equations will improve the computational efficiency for

numerical calculations. In particular, the present method allows one to identify the physical essence of the

problems. For example, when the plate is subjected to a normal mechanical force at the top or bottom
surfaces, only the eighth-order state equation should be solved.

The state space formulations are also valid for a material with arbitrary nonhomogeneous proper-

ties along the axis of symmetry, for which an approximate laminate model is adopted to get a closed-

form solution of the plate problem. It is also noted here that a similar model was ever employed by

Fan and Zhang (1992), who dealt with a state equation with variable coefficients involving the
efined as: jðwith� withoutÞ=withj.



Fig. 5. Effect of magnetoelectric coupling on through thickness distribution of Dz.

Fig. 6. Effect of magnetoelectric coupling on through thickness distribution of /.

5704 W.Q. Chen, K.Y. Lee / International Journal of Solids and Structures 40 (2003) 5689–5705
coordinate variable only. The analysis based on the approximate laminate model is very powerful since
it can deal with arbitrary material inhomogeneity along the thickness direction. Furthermore, with

the increase of layer number, the model will approach the actual structure and hence we can arrive

at a solution of any expected precision. For a homogeneous or laminated plate with simply sup-

ported or rigidly slipping conditions, the solution presented in this paper is completely exact. Since no

assumption on the magneto-electro-elastic field, such as those employed in plate theories, has been in-

troduced except for the approximation due to the laminate model, the present analysis can serve as a

three-dimensional benchmark to check various two-dimensional simplified theories and numerical

methods.
The magnetoelectric coupling between the two phases BaTiO3 and CoFe2O4 due to the material syn-

thesis is discussed through the numerical investigation. We find that when the plate is subjected to a

magnetic force, the influence of this coupling becomes significant on the electric field. This should be an

important issue in practical design of magneto-electro-elastic structures with heterogeneous material

properties.
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